Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice.

نویسندگان

  • L He
  • J Chen
  • B Dinger
  • K Sanders
  • K Sundar
  • J Hoidal
  • S Fidone
چکیده

Various heme-containing proteins have been proposed as primary molecular O(2) sensors for hypoxia-sensitive type I cells in the mammalian carotid body. One set of data in particular supports the involvement of a cytochrome b NADPH oxidase that is commonly found in neutrophils. Subunits of this enzyme have been immunocytochemically localized in type I cells, and diphenyleneiodonium, an inhibitor of the oxidase, increases carotid body chemoreceptor activity. The present study evaluated immunocytochemical and functional properties of carotid bodies from normal mice and from mice with a disrupted gp91 phagocytic oxidase (gp91(phox)) DNA sequence gene knockout (KO), a gene that codes for a subunit of the neutrophilic form of NADPH oxidase. Immunostaining for tyrosine hydroxylase, a signature marker antigen for type I cells, was found in groups or lobules of cells displaying morphological features typical of the O(2)-sensitive cells in other species, and the incidence of tyrosine hydroxylase-immunopositive cells was similar in carotid bodies from both strains of mice. Studies of whole cell K(+) currents also revealed identical current-voltage relationships and current depression by hypoxia in type I cells dissociated from normal vs. KO animals. Likewise, hypoxia-evoked increases in intracellular Ca(2+) concentration were not significantly different for normal and KO type I cells. The whole organ response to hypoxia was evaluated in recordings of carotid sinus nerve activity in vitro. In these experiments, responses elicited by hypoxia and by the classic chemoreceptor stimulant nicotine were also indistinguishable in normal vs. KO preparations. Our data demonstrate that carotid body function remains intact after sequence disruption of the gp91(phox) gene. These findings are not in accord with the hypothesis that the phagocytic form of NADPH oxidase acts as a primary O(2) sensor in arterial chemoreception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase.

We previously reported that reactive oxygen species generated by NADPH oxidase 2 (Nox2) induces sensory plasticity of the carotid body, manifested as a progressive increase in baseline sensory activity or sensory long-term facilitation (sLTF). ANG II, a peptide generated within the carotid body, is a potent activator of Nox2. In the present study, we tested the hypothesis that ANG II evokes sLT...

متن کامل

Role of components of the phagocytic NADPH oxidase in oxygen sensing.

It has been hypothesized that O(2) sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O(2) sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plet...

متن کامل

Interleukin-10 protects against aging-induced endothelial dysfunction

Carotid and cerebrovascular disease increase markedly with age contributing to stroke and cognitive impairment. Inflammation is a key element of vascular disease. In these studies, we tested the hypothesis that interleukin-10 (IL-10), a potent anti-inflammatory cytokine, protects against aging-induced endothelial dysfunction. Responses of carotid arteries from adult (5 ± 1 months) and old (22 ±...

متن کامل

NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia.

Respiratory motoneuron response to hypoxia is reflex in nature and carotid body sensory receptor constitutes the afferent limb of this reflex. Recent studies showed that repetitive exposures to hypoxia evokes long term facilitation of sensory nerve discharge (sLTF) of the carotid body in rodents exposed to chronic intermittent hypoxia (CIH). Although studies with anti-oxidants suggested the inv...

متن کامل

NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2.

We previously reported that NADPH oxidase activity is greater in intracranial cerebral versus systemic arteries of the rat. Here, we first tested whether NADPH oxidase activity is also greater in intracranial cerebral than systemic arteries of three other animal species, i.e., mouse, rabbit, and pig. Second, using Nox2-deficient mice, we evaluated the involvement of Nox2-containing NADPH oxidas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002